Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (204)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38436377

RESUMO

The field of plant biotechnology has witnessed remarkable advancements in recent years, revolutionizing the ability to manipulate and engineer plants for various purposes. However, as research in this field increases in diversity and becomes increasingly sophisticated, the need for early, efficient, dependable, and high-throughput transient screening solutions to narrow down strategies proceeding to stable transformation is more apparent. One method that has re-emerged in recent years is the utilization of plant protoplast, for which methods of isolation and transfection are available in numerous species, tissues, and developmental stages. This work describes a simple automated protocol for the randomized preparation of plasmid within a 96-well plate, a method for the isolation of etiolated maize leaf protoplast, and an automated transfection procedure. The adoption of automated solutions in plant biotechnology, exemplified by these novel liquid handling protocols for plant protoplast transfection, represents a significant advancement over manual methods. By leveraging automation, researchers can easily overcome the limitations of traditional methods, enhance efficiency, and accelerate scientific progress.


Assuntos
Protoplastos , Zea mays , Zea mays/genética , Transgenes , Transfecção , Folhas de Planta/genética
2.
Methods Mol Biol ; 2653: 129-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995624

RESUMO

In an era of cost-efficient gene synthesis and high-throughput construct assembly, the onus of scientific experimentation is on the rate of in vivo testing for the identification of top performing candidates or designs. Assay platforms that are relevant to the species of interest and in the tissue of choice are highly desirable. A protoplast isolation and transfection method that is compatible with a large repertoire of species and tissues would be the platform of choice. A necessary aspect of this high-throughput screening approach is the need to handle many delicate protoplast samples at the same time, which is a bottleneck for manual operation. Such bottlenecks can be mitigated with the use of automated liquid handlers for the execution of protoplast transfection steps. The method described within this chapter utilizes a 96-well head for simultaneous, high-throughput initiation of transfection. While initially developed and optimized for use with etiolated maize leaf protoplasts, the automated protocol has also been demonstrated to be compatible with other established protoplast systems, such as soybean immature embryo derived protoplast, similarly described within. This chapter also includes instructions for a sample randomization design to reduce the impact of edge effects, which might be present when microplates are used for fluorescence readout following transfection. We also describe a streamlined, expedient, and cost-effective protocol for determining gene editing efficiencies using the T7E1 endonuclease cleavage assay with a publicly available image analysis tool.


Assuntos
Edição de Genes , Protoplastos , Protoplastos/metabolismo , Transfecção , Transgenes , Folhas de Planta/genética
3.
Plant Biotechnol J ; 19(4): 830-843, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33179383

RESUMO

Reverse genetics approaches have revolutionized plant biology and agriculture. Phenomics has the prospect of bridging plant phenotypes with genes, including transgenes, to transform agricultural fields. Genetically encoded fluorescent proteins (FPs) have revolutionized plant biology paradigms in gene expression, protein trafficking and plant physiology. While the first instance of plant canopy imaging of green fluorescent protein (GFP) was performed over 25 years ago, modern phenomics has largely ignored fluorescence as a transgene expression device despite the burgeoning FP colour palette available to plant biologists. Here, we show a new platform for stand-off imaging of plant canopies expressing a wide variety of FP genes. The platform-the fluorescence-inducing laser projector (FILP)-uses an ultra-low-noise camera to image a scene illuminated by compact diode lasers of various colours, coupled with emission filters to resolve individual FPs, to phenotype transgenic plants expressing FP genes. Each of the 20 FPs screened in plants were imaged at >3 m using FILP in a laboratory-based laser range. We also show that pairs of co-expressed fluorescence proteins can be imaged in canopies. The FILP system enabled a rapid synthetic promoter screen: starting from 2000 synthetic promoters transfected into protoplasts to FILP-imaged agroinfiltrated Nicotiana benthamiana plants in a matter of weeks, which was useful to characterize a water stress-inducible synthetic promoter. FILP canopy imaging was also accomplished for stably transformed GFP potato and in a split-GFP assay, which illustrates the flexibility of the instrument for analysing fluorescence signals in plant canopies.


Assuntos
Biologia Sintética , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Plantas Geneticamente Modificadas/genética , /genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...